\mathbf{A}

TS 1 IRIS: Devoir n° 3

1) Transformation complexe

Soit f la transformation complexe qui à tout point M d'affixe z associe le point M' = f(M) d'affixe Z = f(z) définie ainsi :

$$z \longmapsto Z = f(z) = \frac{i(z+2)}{z+1}$$

a) Soit le point O d'affixe (0) et le point A d'affixe (-1+i). Déterminer les affixes des images O' = f(O) et A' = f(A). Placer sur une figure les points O, A, O' et A' sur une même figure.

b) Montrer que l'on peut écrire f(z) sous la forme : $f(z) = \frac{i}{z+1} + i$

c) Déterminer la nature de la transformation f en la décomposant en transformations élémentaires.

d) Soit D l'axe des réels et D' = f(D) son image par la transformation f. Représenter pas à pas la transformation de D sur une nouvelle figure sans oublier de nommer les intermédiaires.

e) Soit Δ l'axe des imaginaires et $\Delta' = f(\Delta)$ son image par la transformation f. Représenter de même la transformation de Δ sur une nouvelle figure.

f) Soit C le cercle trigonométrique et C' = f(C) son image. Représenter de même la transformation de C sur une nouvelle figure.

2) Étude de fonction

Le but de cet exercice est de faire, dans un repère orthonormé (O,I,J) une représentation graphique soignée de la fonction numérique f définie par : $x \mapsto y = \frac{e^x}{x^2 + 1}$

a) Déterminer D_f le domaine de définition de cette fonction et préciser les coordonnées du point d'intersection avec l'axe des ordonnées.

b) Montrer que la dérivée de f peut s'écrire sous la forme : $f'(x) = \frac{(x-1)^2}{x^2+1}f(x)$

c) Établir un tableau dans lequel on résumera variations et valeurs de la fonction f.

d) Faire un second tableau dans lequel on donnera les valeurs exactes et approchées de x, y=f(x) et y'=f'(x) pour les points d'abscisses -1, 0, 1, 2 et 3.

e) Dessiner soigneusement C_f la courbe représentative de la fonction f dans le repère orthonormé (O, I, J). On choisira une unité adaptée.

On précisera les tangentes à la courbe \mathcal{C}_f aux points d'abscisses 0 et 1 .

On donne: $e \approx 2,72$; $e^{-1} = \frac{1}{e} \approx 0,37$; $e^2 \approx 7,39$; $\frac{e^3}{10} \approx 2,01$

В

TS 1 IRIS: Devoir n° 3

1) Transformation complexe

Soit f la transformation complexe qui à tout point M d'affixe z associe le point M' = f(M) d'affixe Z = f(z) définie ainsi :

$$z \longmapsto Z = f(z) = \frac{2i - z}{z - i}$$

a) Soit le point O d'affixe (0) et le point A d'affixe (1+i). Déterminer les affixes des images O' = f(O) et A' = f(A).

Placer sur une figure les points O, A, O' et A' sur une même figure.

- b) Montrer que l'on peut écrire f(z) sous la forme : $f(z) = \frac{i}{z-i} 1$
- c) Déterminer la nature de la transformation f en la décomposant en transformations élémentaires.
- d) Soit D l'axe des réels et D' = f(D) son image par la transformation f. Représenter pas à pas la transformation de D sur une nouvelle figure sans oublier de nommer les intermédiaires.
 - e) Soit Δ l'axe des imaginaires et $\Delta' = f(\Delta)$ son image par la transformation f. Représenter de même la transformation de Δ sur une nouvelle figure.
 - f) Soit C le cercle trigonométrique et C' = f(C) son image. Représenter de même la transformation de C sur une nouvelle figure.

2) Étude de fonction

Le but de cet exercice est de faire, dans un repère orthonormé (O,I,J) une représentation graphique soignée de la fonction numérique f définie par : $x \mapsto y = \frac{e^x}{x^2}$

- a) Déterminer D_f le domaine de définition de cette fonction.
- **b)** Montrer que la dérivée de f peut s'écrire sous la forme : $f'(x) = \frac{(x-2)}{x} f(x)$
- c) Établir un tableau dans lequel on résumera variations et valeurs de la fonction f.
- d) Faire un second tableau dans lequel on donnera les valeurs exactes et approchées de x, y = f(x) et y' = f'(x) pour les points d'abscisses -1, 1, 2 et 3.
- e) Dessiner soigneusement C_f la courbe représentative de la fonction f dans le repère orthonormé (O, I, J). On choisira une unité adaptée.

On précisera les tangentes à la courbe C_f aux points d'abscisses 1 et 2 .

On donne:
$$e \approx 2,72$$
; $e^{-1} = \frac{1}{e} \approx 0,37$; $e^2 \approx 7,39$; $\frac{e^3}{9} \approx 2,23$

Devoir n° 3

TS 1 IRIS: Devoir n° 3 Sujet A (Solution)

1) Transformation complexe

Soit f la transformation complexe qui à tout point M d'affixe z associe le point M'=f(M) d'affixe Z=f(z) définie ainsi : $z \longmapsto Z=f(z)=\frac{i(z+2)}{z+1}$

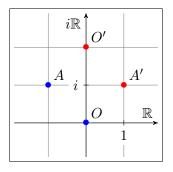
a) Soit le point O d'affixe (0) et le point A d'affixe (-1+i). Déterminer les affixes des images O' = f(O) et A' = f(A). Placer sur une figure les points O, A, O' et A' sur une même figure.

$$O \mapsto O'$$

$$f(0) = 2i$$

$$A \mapsto A'$$

$$f(-1+i) = \frac{i(1+i)}{i} = 1+i$$



- **b)** Montrer que l'on peut écrire f(z) sous la forme : $f(z) = \frac{i}{z+1} + i$ (Par identification)
- c) Déterminer la nature de la transformation f en la décomposant en transformations élémentaires. Décomposition en transformations élémentaires :

$$z \xrightarrow{f_1} z_1 = z + 1 \xrightarrow{f_2} z_2 = \frac{1}{z_1} \xrightarrow{f_3} z_3 = i z_2 \xrightarrow{f_4} Z = f(z) = z_3 + i$$

Avec: $f = f_4 \circ f_3 \circ f_2 \circ f_1$

 f_1 Translation de vecteur d'affixe (1)

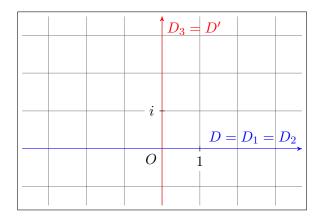
 f_2 Inversion Complexe

 f_3 Rotation de centre O d'angle $\frac{\pi}{2} = \arg(i)$

 f_4 Translation de vecteur d'affixe (i)

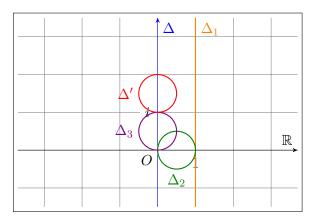
d) Soit D l'axe des réels et D' = f(D) son image par la transformation f. Représenter pas à pas la transformation de D sur une nouvelle figure.

$$D \stackrel{f_1}{\longmapsto} D_1 \stackrel{f_2}{\longmapsto} D_2 \stackrel{f_3}{\longmapsto} D_3 \stackrel{f_4}{\longmapsto} D' = f(D)$$



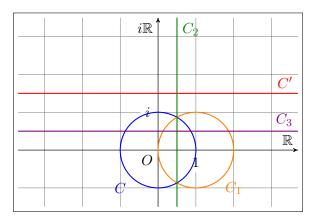
e) Soit Δ l'axe des imaginaires et $\Delta' = f(\Delta)$ son image par la transformation f. Représenter de même la transformation de Δ sur une nouvelle figure.

$$\Delta \xrightarrow{f_1} \Delta_1 \xrightarrow{f_2} \Delta_2 \xrightarrow{f_3} \Delta_3 \xrightarrow{f_4} \Delta' = f(\Delta)$$



f) Soit C le cercle trigonométrique et C' = f(C) son image. Représenter de même la transformation de C sur une nouvelle figure.

$$C \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \xrightarrow{f_3} C_3 \xrightarrow{f_4} C' = f(C)$$



2) Étude de fonction

Le but de cet exercice est de faire, dans un repère orthonormé (O,I,J) une représentation graphique soignée de la fonction numérique f définie par : $x \mapsto y = \frac{e^x}{x^2 + 1}$

a) Déterminer D_f le domaine de définition de cette fonction et préciser les coordonnées du point d'intersection avec l'axe des ordonnées.

Domaine de définition : $D_f = \mathbb{R}$ intersection avec l'axe Oy : x = 0 y = f(0) = 1

b) Montrer que la dérivée de f peut s'écrire sous la forme : $f'(x) = \frac{(x-1)^2}{x^2+1}f(x)$

$$f'(x) = \frac{(x^2+1)e^x - 2x e^x}{(x^2+1)^2} = \frac{(x^2-2x+1)e^x}{(x^2+1)^2}$$
$$= \frac{(x-1)^2}{(x^2+1)} \frac{e^x}{(x^2+1)} \quad \text{donc} : \quad f'(x) = \frac{(x-1)^2}{x^2+1} f(x)$$

Devoir n° 3 D-IRIS1-03-AB.tex

c) Établir un tableau dans lequel on résumera les variations et valeurs de la fonction f.

x	$-\infty$		1		$+\infty$
y'		+	0	+	
					$+\infty$
			$\frac{e}{2}$	7	
$\mid y \mid$			\longleftrightarrow		
		7			
	0				

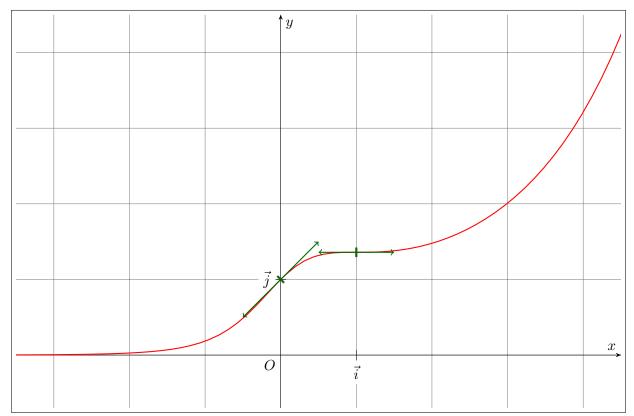
d) Faire un second tableau dans lequel on donnera les valeurs exactes et approchées de x, y=f(x) et y'=f'(x) pour les points d'abscisses -1, 0, 1, 2 et 3.

\boldsymbol{x}	-1	0	1	2	3
f(x)	$\frac{1}{2e} \simeq 0.18$	1	$\frac{e}{2} \simeq 1,36$	$\frac{e^2}{5} \simeq 1,48$	$\frac{e^3}{10} \simeq 2,01$
f'(x)	$\frac{1}{e} \simeq 0,37$	1	0	$\frac{e^2}{25} \simeq 0,30$	$\frac{e^3}{25} \simeq 0,80$

e) Dessiner soigneusement C_f la courbe représentative de la fonction f dans le repère orthonormé (O, I, J). On choisira une unité adaptée.

On précisera les tangentes à la courbe \mathcal{C}_f aux points d'abscisses 0 et 1 .

On donne:
$$e \approx 2,72$$
; $e^{-1} = \frac{1}{e} \approx 0,37$; $e^2 \approx 7,39$; $\frac{e^3}{10} \approx 2,01$



TS 1 IRIS: Devoir n° 3 Sujet B (Solution)

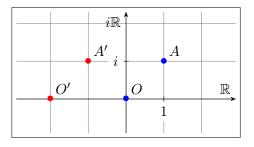
1) Transformation complexe

Soit f la transformation complexe qui à tout point M d'affixe z associe le point M' = f(M) d'affixe Z = f(z) définie ainsi :

$$z \longmapsto Z = f(z) = \frac{2i - z}{z - i}$$

a) Soit le point O d'affixe (0) et le point A d'affixe (1+i). Déterminer les affixes des images O' = f(O) et A' = f(A). Placer sur une figure les points O, A, O' et A' sur une même figure.

$$O \mapsto O'$$
 $f(0) = -2$
 $A \mapsto A'$ $f(1+i) = i-1$



b) Montrer que l'on peut écrire f(z) sous la forme :

$$f(z) = \frac{i}{z - i} - 1$$
 (Par identification).

c) Déterminer la nature de la transformation f en la décomposant en transformations élémentaires. Décomposition en transformations élémentaires :

$$z \xrightarrow{f_1} z_1 = z - i \xrightarrow{f_2} z_2 = \frac{1}{z_1} \xrightarrow{f_3} z_3 = i z_2 \xrightarrow{f_4} Z = f(z) = z_3 - 1$$

Avec: $f = f_4 \circ f_3 \circ f_2 \circ f_1$

 f_1 Translation de vecteur d'affixe (-i)

 f_2 Inversion Complexe

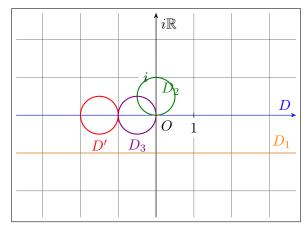
 f_3 Rotation de centre O d'angle $\frac{\pi}{2} = \arg(i)$

 f_4 Translation de vecteur d'affixe (-1)

d) Soit D l'axe des réels et D' = f(D) son image par la transformation f.

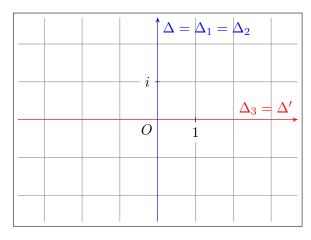
Représenter pas à pas la transformation de D sur une nouvelle figure sans oublier de nommer les intermédiaires.

$$D \xrightarrow{f_1} D_1 \xrightarrow{f_2} D_2 \xrightarrow{f_3} D_3 \xrightarrow{f_4} D' = f(D)$$



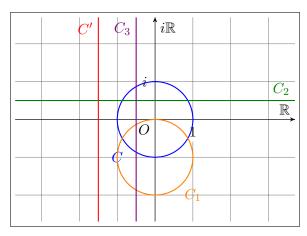
e) Soit Δ l'axe des imaginaires et $\Delta' = f(\Delta)$ son image par la transformation f. Représenter de même la transformation de Δ sur une nouvelle figure.

$$\Delta \stackrel{f_1}{\longmapsto} \Delta_1 \stackrel{f_2}{\longmapsto} \Delta_2 \stackrel{f_3}{\longmapsto} \Delta_3 \stackrel{f_4}{\longmapsto} \Delta' = f(\Delta)$$



f) Soit C le cercle trigonométrique et C' = f(C) son image. Représenter de même la transformation de C sur une nouvelle figure.

$$C \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \xrightarrow{f_3} C_3 \xrightarrow{f_4} C' = f(C)$$



2) Étude de fonction

Le but de cet exercice est de faire, dans un repère orthonormé (O,I,J) une représentation graphique soignée de la fonction numérique f définie par : $x \mapsto y = \frac{e^x}{x^2}$

a) Déterminer D_f le domaine de définition de cette fonction.

Domaine de définition :
$$D_f = \mathbb{R}^* =] - \infty; 0[\cup]0; +\infty[$$

b) Montrer que la dérivée de f peut s'écrire sous la forme : $f'(x) = \frac{(x-2)}{x} f(x)$

$$f'(x) = \frac{x^2 e^x - 2x e^x}{(x^2)^2} = \frac{(x^2 - 2x)e^x}{(x^2)^2}$$
$$= \frac{x(x-2)}{x^2} \frac{e^x}{x^2} \quad \text{donc} : \quad f'(x) = \frac{(x-2)}{x} f(x)$$

Devoir n° 3

c) Établir un tableau dans lequel on résumera variations et valeurs de la fonction f.

x	$-\infty$		()		2		$+\infty$
y'		+			_	0	+	
			$+\infty$	$+\infty$				$+\infty$
$\mid y \mid$		7			\searrow	$\frac{e^2}{4}$	7	
	0					\longleftrightarrow		

d) Faire un second tableau dans lequel on donnera les valeurs exactes et approchées de x, y = f(x) et y' = f'(x) pour les points d'abscisses -1, 1, 2 et 3.

x		-1	1	2	3	
f(x))	$\frac{1}{e} \simeq 0,37$	$e \simeq 2,72$	$\frac{e^2}{4} \simeq 1,85$	$\frac{e^3}{9} \simeq 2,23$	
f'(x))	$\frac{3}{e} \simeq 1,10$	$-e \simeq -2,72$	0	$\frac{e^3}{27} \simeq 0,74$	

e) Dessiner soigneusement C_f la courbe représentative de la fonction f dans le repère orthonormé (O, I, J). On choisira une unité adaptée.

On précisera les tangentes à la courbe \mathcal{C}_f aux points d'abscisses 1 et 2 .

On donne:
$$e \approx 2,72$$
; $e^{-1} = \frac{1}{e} \approx 0,37$; $e^2 \approx 7,39$; $\frac{e^3}{9} \approx 2,23$

